gmxbatch
Release 0.1.dev50+gacbf409.d20230907

Sep 07, 2023

Contents:

1 Installation

Pip ... o

1.1

1.2

1.3

1.4 From source
2 Examples

2.1

3 Origins of the project

Example 1: Construct and equilibrate a box of methanol

4 Design Philosophy

5 Class hierarchy

5.1
52
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

Coordinates v v v v it
MDEngine

Environment

ForceField

IndexGroups

IntermolecularInteractions
MDP

MoleculeType

Results

Systemo
Trajectory v . v v e
XVGFile

6 Indices and tables

LW W W W W

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

gmxbatch is a Python package for GROMACS scripting. It provides a high-level, object oriented interface to common
tasks in the MD simulation workflow.

Warning: We intentionally abstract away much of the internals and fine details of molecular dynamics simulations
with GROMACS. While this may come handy in the rapid development of simulation scripts, the user is cautioned
and required to always check the validity of the input files produced by gmxbatch, especially the topologies and the
MDP files. The authors of this package take no responsibility whatsoever for the correctness of the simulations, all
responsibility lies with the user.

Contents: 1

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

2 Contents:

CHAPTER 1

Installation

1.1 Dependencies

gmxbatch depends on the following third party packages:
 matplotlib >=3.0.0
* jinja2
e numpy >= 1.15.0

For most functionality, you will also need a working installation of GROMACS.

1.2 Conda

conda install -c awacha gmxbatch

1.3 Pip

pip install gmxbatch

1.4 From source

git clone https://gitlab.com/awacha/gmxbatch.git
cd gmxbatch

git submodule init

git submodule update

python setup.py install

https://matplotlib.org
https://jinja.palletsprojects.com
https://numpy.org
https://gromacs.org

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

4 Chapter 1. Installation

CHAPTER 2

Examples

Some examples on how to use gmxbatch

2.1 Example 1: Construct and equilibrate a box of methanol

2.1.1 0. Prerequisites

Install gmxbatch.
Create a directory and put the following files in it:
¢ From the source distribution of gmxbatch (at https://gitlab.com/awacha/gmxbatch):
— meoh.gro from the fest/meoh directory
— meoh.itp from the test/moleculetypes/charmm directory
e The CHARMM36m force field bundle from Alexander MacKerell’s site. Download and extract it.

Change to that directory.

2.1.2 1. Initialization

In the first part of a simulation script with gmxbatch is the initialization. This is probably the most important part as
all parameters are decided here.

Let us first import the required packages

>>> import gmxbatch
>>> import matplotlib.pyplot as plt # for plotting

Of course we will need a GMX engine:

https://gitlab.com/awacha/gmxbatch
https://gitlab.com/awacha/gmxbatch/-/raw/master/test/meoh/meoh.gro?inline=false
https://gitlab.com/awacha/gmxbatch/-/raw/master/test/moleculetypes/charmm/meoh.itp?inline=false
http://mackerell.umaryland.edu/download.php?filename=CHARMM_ff_params_files/charmm36-mar2019.ff.tgz

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

>>> engine = gmxbatch.MDEngine ('gmx') # use the default 'gmx' executable on the SPATH

Define the force field we want to use. We choose the CHARMM36m force field, because it has parameters for methanol
through CGenFF. You should already have downloaded and extracted it to your working directory. and extract it in
your working directory. You should have a directory called ‘charmm36-mar2019.1f".

The force field object in gmxbatch comprises three aspects: the atom and interaction definitions (through the force-
field.itp topology include file), default MDP options, and a list of known molecule types. Molecule types for common
solvents and ions are usually found in the force field directory in corresponding .itp files. When initializing a force
field object, two required parameters are the ITP file of the force field itself and a search path for ITP files containing
molecule types.

At present gmxbatch can handle Amber, CHARMM and GROMOS force fields, but it should be straightforward to
extend the code with others. We use here the just downloaded CHARMM36m force field, and add the force field
directory and the current directory as search paths for molecule type ITPs.

>>> ff = gmxbatch.CHARMM (itp="'charmm36-mar2019.ff/forcefield.itp', moltypespath=[
—'charmm36-mar2019.ff', '.'])

Now we define the environment, complete with a thermostat set at 300 K with 1 ps coupling time, and an isotropic
Parrinello-Rahman barostat at 1 bar with 5 ps coupling time.

>>> env = gmxbatch.Environment (
thermostat=gmxbatch.Thermostat (
groups=['System'], # only one coupling group: only solvent
ref_temperature=300, # K
tau=1, # ps
Ce algorithm="'V-rescale' # Velocity rescaling algorithm for the _
—production_ run
) 4
barostat=gmxbatch.Barostat (
ref_pressure=1, # bar
tau=5, # ps
couplingtype="'isotropic', # isotropic system
compressibility=4.5e-5, # 1/bar; compressibility of water
algorithm='Parrinello-Rahman' # used for the _production_ run only

))

Now assemble the system. Take the initial state from meoh.gro in your working directory

>>> conf = gmxbatch.Coordinates('meoh.gro')

Assemble the system

>>> system = gmxbatch.System/(
name="'Methanol"',
forcefield=ff,
conf=conf,
moleculetypes=[ff.moleculetype ('MEOH', 1, 'meoh.itp')],
indexgroups=None)

Finally, create the Simulation instance:

>>> sim = gmxbatch.Simulation (
engine=engine,
system=system,
environment=env)

6 Chapter 2. Examples

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

Sort the atoms in the coordinate set to match the topology:

>>> sim.sortAtoms ()

Now the initialization part is done.

2.1.3 2. Simulation

The strength of gmxbatch is in its simplicity when coming to this part. Many simulation tasks involving more calls to
gmx subprograms are represented as one function call, as you will see below.

a. Adjust box size

First we adjust the box size. We put our single methanol molecule in a cubic box with 0.5 nm minimal distance from
the molecule in the center.

>>> sim.rebox ('cubic', 0.5)

Under the hood, a new file is generated, and sim.conf is updated to show the re-boxed structure.

b. Energy minimization of a single methanol molecule

Executing MD runs is really cheap:

>>> results = sim.em(nsteps=10000)

This also updates the underlying system. Additionally, each MD run returns a Results object with the trajectory, the
final state of the run and a number of energy terms. We will see them later.

c. Replicate the molecules

Make a small box and do the replication:

>>> sim.rebox ('cubic', 0.1)
>>> print (sim.system.moleculetypes[0])
MoleculeType: MEOH
kind: Solvent
count: 1
itp: ../moleculetypes/charmm/meoh.itp
atoms: 6
posres macro: POSRES_MEOH
>>> print (len(sim.system.conf))
6
>>> sim.repeat (10, 10, 10, rot=True) # 10x10x10 molecules, each is randomly oriented
>>> print (sim.system.moleculetypes[0])
MoleculeType: MEOH
kind: Solvent
count: 1000
itp: ../moleculetypes/charmm/meoh.itp
atoms: 6
posres macro: POSRES_MEOH
>>> print (len(sim.system.conf))
6000

2.1. Example 1: Construct and equilibrate a box of methanol 7

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

As you see, both the topology and the coordinate set has been updated.

d. Energy minimization

Do a short energy minimization on the box.

>>> emresults sim.em (nsteps=50000)
>>> f=plt.figure()
>>> emresults.energy|['potential'].plot (figure=£figqg)
—"time"

create a new Matplotlib figure

plot the Potential energy Vs.

e. Equilibration in the NVT ensemble

Perform equilibration in the NVT ensemble:

>>> nvtresults sim.nvt (100, deffnm='nvt') # 100 ps
>>> nvtresults.energy['potential'].plot (figure=plt.figure())
the time

—energy vs.

>>> nvtresults.energy|['temperature'] .plot (figure=plt.figure())

—temperature has been stabilized or not

plot the potential_,

see 1f the,,

f. Compress the system

The methanol molecules are still very much apart. Apply a large pressure (e.g. 1000 bar) to compress them.

1000 # bar
deffnm="npt1000bar")

>>> env.barostat.ref_pressure
>>> nptl1l000results sim.npt (200,
>>> nptl1000results
—potential energy
>>> nptl1l000results
—temperature vs. the time

>>> nptl1000results.energy['volume'].plot (figure=plt.figure())
—~the time

0.2

vs. the time

.energy|['potential'].plot (figure=plt.figure())

.energy | 'temperature'] .plot (figure=plt.figure())

ns
plot the_

plot the,,

plot the volume vs._,

d. Equilibration in the NpT ensemble

Now we set the reference pressure back to 1 bar and re-equilibrate the system at normal atmospheric pressure.

>>> env.barostat.ref_pressure = 1

>>> nptresults sim.npt (200, deffnm='npt') # 0.2 ns

>>> nptresults.energy|['potential'].plot (figure=plt.figure())
the time

—energy vs.
>>> nptresults.energy|'temperature'] .plot (figure=plt.figure())
—temperature vs. the time

>>> nptresults.energy['volume'].plot (figure=plt.figure())
—time

plot the volume vs.

plot the potential_,
plot the,

the_,

h. Production MD

Do a short production run on the equilibrated system

Chapter 2. Examples

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

>>> mdresults sim.md (1000, deffnm='md") # 1 ns
>>> mdresults.energy|['potential'].plot (figure=plt.figure())

—energy vs. the time

>>> mdresults.energy|['temperature'] .plot (figure=plt.figure())
—Vvs. the time

>>> mdresults.energy['volume'] .plot (figure=plt.figure())
—time

>>> sim.conf.write('meohl000final.gro')

plot the volume Vvs.

plot the potential,,
plot the temperature,,

the,,

write the resulting state to an output file

2.1. Example 1: Construct and equilibrate a box of methanol

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

10 Chapter 2. Examples

CHAPTER 3

Origins of the project

This project—as probably many others—has been born from frustration. People working with computer simulation
sooner or later encounter the need of automation, when faced with increasing simulation demands and projects with
very similar workflows. A first solution is typically a simple shell script consisting of the sequence of commands. Some
operations, especially file edits are not easy to represent in the form of command line utilities. Another challenge
is decisions and conditionals, for which most shells (namely BASH, CSH and their variants) have limited and/or
cumbersome facilities.

These advanced operations can be readily solved by a more complete programming language, for instance Python.
Inserting Python snippets into the shell scripts (e.g. with “here documents” using the “<<” operator in BASH) mitigates
the problem, but the resulting scripts tend to be large and unmaintainable. The largest advantage of BASH over Python
is the straightforward way to run programs.

The autors of this project experienced that the scripts developed for their workflows tended to contain more and
more Python blocks, and much of the other code was information transfer between Python and BASH. When the
Python:BASH ratio reached around 1:1, we thought to turn the tables and choose Python as the main language and
replace the remaining BASH constructs in a Pythonic, object oriented way. This also came with the advantage that
many common operations (such as calling grompp or solvate) can be abstracted away. Of course, abstraction comes
with the danger of turning parts of the workflow into black boxes and taking away / hiding important decisions from
the end user. The end user of this package is therefore encouraged to always check the files produced, especially
coordinate sets, topologies and molecular dynamics parameter files (.mdp).

We also intended to make this package as portable as possible. We are aware of the existence of gmxapi, the official
Python bindings of GROMACS supplied with the newest versions. Because it directly uses the shared libraries of
GROMACS, it is very fast. However, it is not easily portable between versions. In gmxbatch we depend on and
use the command line interface by invoking gmx subprograms where needed. This results in a one-size-fits-(almost)-
all package, where the exact program version is selected by the user. We also implemented a higher level object
oriented interface, letting the user focus on the physics/chemistry instead of the exact parametrization of GROMACS
commands.

11

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

12 Chapter 3. Origins of the project

CHAPTER 4

Design Philosophy

At this point this is just a jumble of decisions

1.

® Nk »N

Multi-layer approach: high level API for casual users, gmx commands are also exposed for power users
Auto-generating the overall topology. Topology file generation must be cheap.

Molecule topologies are to be given by the user (i.e. functionality of pdb2gmx is not implemented)
Generate files for each run separately, with a common name prefix (“deffnm”)

Lazy loading where possible

Safe default values according to the best practice

All responsibility lies with the user]:-P

13

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

14 Chapter 4. Design Philosophy

CHAPTER B

Class hierarchy

Fig. 1: Class hierarchy of gmxbatch

5.1 Coordinates

Stores a conformation. Input/output from/to GRO and G96 files is implemented. A lazy loading mechanism is in place:
by default when a new instance is created with a file name, the actual data set is not loaded from the file automatically,
only when first accessed.

5.2 MDEngine

This class implements low level access to gmx subcommands. Most commands have a corresponding method of this
class. Adding more commands should be a straightforward business.

5.3 Environment

This class contains information on external conditions, e.g. temperature and pressure coupling (or external pulling
forces when they will be implemented).

5.4 ForceField

Contains information on atom types and the forces acting between various atom types, i.e. the information typically
contained in the GROMACS force field directory (e.g. charmm?27.f). It also stores a list of supported molecule types.
When constructing a System, molecule types are chosen from this list and the appropriate counts are set.

15

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

5.5 IndexGroups

GROMACS makes extensive use of index groups for at varios points of the simulation workflow. This class holds a
list of defined index groups. At each simulation run, an index file is written with the current file name prefix.

5.6 Intermolecularinteractions

At the end of a GROMACS topology, after the [molecules] block intermolecular interactions can be defined in the [
intermolecular_interactions | section. Presently bonds, angles and dihedrals can be defined by global atom numbers,
function type numbers and the required parameters for the function. See the GROMACS manual for details.

5.7 MDP

5.8 MoleculeType

As by design we don’t implement pdb2gmx functionality, the user is responsible to create the I'TP files containing [
moleculetype | blocks for all molecules she wants to use. This typically involves running pdb2gmx and editing the
resulting topol.top file to contain only the [moleculetype] section. Position restraints should also be inserted in this
file. We supply the tool fop2itp to aid this conversion.

MoleculeType instances have the following important attributes:
* name: molecule type name
¢ kind: molecule kind: Solute, Solvent, Ion
« itpfile: the corresponding topology include file
 count: the number of molecules of this type in the system
* posresdefine: preprocessor macro for grompp which activates position restraints (e.g. POSRES)

e atoms: atom information read from the ITP file

5.9 Results

5.10 Simulation

This is the main class, encompasses all aspects of an MD simulation. Its main attributes are system and environment.
Most operations (e.g. energy minimization, system replication, solvation, NVT and NpT equilibration, production
MD run etc.) are exposed as methods.

5.11 System

Represents the system being simulated, consisting of the coordinate set, the topology, the force field, index groups
and intermolecular interactions. However, its main responsibility is to store the information on topology and create a
topology file when needed. Operations exposed in the Simulation class change the system automatically, i.e. after an
MD run the coordinate set is updated to the final state of the run.

16 Chapter 5. Class hierarchy

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

5.12 Trajectory

5.13 XVGFile

5.12. Trajectory 17

gmxbatch, Release 0.1.dev50+gacbf409.d20230907

18 Chapter 5. Class hierarchy

CHAPTER O

Indices and tables

* genindex
* modindex

e search

19

	Installation
	Dependencies
	Conda
	Pip
	From source

	Examples
	Example 1: Construct and equilibrate a box of methanol

	Origins of the project
	Design Philosophy
	Class hierarchy
	Coordinates
	MDEngine
	Environment
	ForceField
	IndexGroups
	IntermolecularInteractions
	MDP
	MoleculeType
	Results
	Simulation
	System
	Trajectory
	XVGFile

	Indices and tables

